Lea Community Primary School

[4

Progression in Calculations

Academic year 2023-2024

Declarative Knowledge

	Additive structures	Multiplicative structures	Fractions
EYFS	Number bonds to 5		
Year One	Addition and subtraction within 10.		Half and one quarter of a quantity
Year Two	As above and: Addition and subtraction across 10.	Doubles and halves	As above and: 3 quarters of a quantity
Year Three	As above and : Secure and maintain fluency in addition and subtraction within and across 10, through continued practice.	As above and: Recall the 10 and 5 multiplication tables, and corresponding division facts. Recall the 2,4 and 8 multiplication tables, and corresponding division facts	As above and: One third and two thirds of a quantity One fifth, two fifths, three fifths, four fifths of a quantity
Year Four	Conditional knowledge: Applying the above to problem solving and reasoning.	As above and: Recall the 3, 6 and 9 multiplication tables, and corresponding division facts. Recall the 7 multiplication table, and corresponding division facts Recall the 11 and 12 multiplication tables, and corresponding division facts.	As above and: Equivalent fractions
Year 5		Secure and maintain fluency in all multiplication tables, and	As above and: Fraction, decimal and percentage

		corresponding division facts, through continued practice.	correspondence.
		Conditional knowledge: Applying Year 6 above to problem solving and reasoning.	Conditional knowledge: Applying the above to problem solving and reasoning.

Procedural Knowledge
Addition

Objective and strategies	Concrete	Pictorial	Abstract
Find one more		०000○○	One more than 6 is \qquad 6 and one more is \qquad
Combining two parts to make a whole: part whole model	Use cubes to add two numbers together as a group or in a bar.		$\begin{aligned} & 4+3=7 \\ & 10=6+4 \end{aligned}$

Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
Adding two 2 digit numbers, crossing 10			$\begin{aligned} & 36+24= \\ & 25+27= \end{aligned}$ Charlie has 17 marbles. Ahmed has 29. How many do they have altogether.
Column method-no regrouping	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	Calculations $\begin{gathered} 21+42= \\ 21 \\ +\underline{42} \end{gathered}$

Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2 digit numbers.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help. $13-4=9$
Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Count on to find the difference. Comparison Bar Models Draw bars to find the difference between 2 numbers. Liso is 13 years old. Her sister 1222 years oid. Find the difference in age between them.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches. $23-15=8$

Part Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part part whole model.	Move to using numbers within the part whole model.
Make 10 (regrouping)	Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9.	Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	16-8= How many do we take off to reach the next 10? How many do we have left to take off?
Subtract across a 10 (exchanging)		$\|\mid k: 8$	34-5=

Column method without regrouping	Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number first.		$\begin{gathered} 47-24=23 \\ -20+7 \\ -20+4 \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction.
Column method with regrouping	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make. When confident, children can find their own way to record the exchange/regrouping. Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.	Children can start their formal written method by partitioning the number into clear place value columns. Moving forward the children use a more compact method. This will lead to an understanding of subtracting any number including decimals.

Multiplication

Objective and strategies	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to double a number. double 4 is 8 $4 \times 2=8$	Draw pictures to show how to double a number. Double 4 is 8	Partition a number and then double each part before recombining it back together.
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples. 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 1 20 $\begin{array}{lllllllll}21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 \\ 30\end{array}$ $\begin{array}{lllllllllll}31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40\end{array}$ $\begin{array}{llllllllll}41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50\end{array}$ $\begin{array}{llllllllll}51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60\end{array}$ $\begin{array}{llllllll}61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 \\ 69 & 70\end{array}$ 7172737475 76 17 78 81 79 80 83 81 82 83 84 85 86 87 88 89 90 $\begin{array}{llllllllll}91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100\end{array}$	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$

Repeated addition	Use different objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6$5+5+5=15$1 25 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29	Write addition sentences to describe objects and pictures.
Arrays showing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences. e.g. 4 rows of $6=24$	Draw arrays in different rotations to find commutative Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer. This moves to the more compact method.

Division

Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{ll} \text { Eg } 15+3=5 & 5 \times 3=15 \\ 15+5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$
Division with a remainder	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder.	Complete written divisions and show the remainder using r.

Division by Subtraction (Chunking)	$48 \div 4=12\binom{\text { groups }}{\text { of } 4}$ 44 nola 40 ene 36 200 32 -9 0 28 -ane 24 - 16 페페 $12=0=$ 8 •• $4=0$ 0	$\begin{aligned} 48+4 & =10(\text { groups of } 4)+2(\text { groups of } 4) \\ & =12(\text { groups of } 4) \end{aligned}$	Progressing to: If children have full conceptual understanding and are proficient with chunking method, they may be taught short (bus stop) and long division.

Short division	Tens Units 3 ${ }^{3}$ ${ }^{2}$ 3 $\odot \odot \odot$ \odot $\odot \odot$ \odot $\odot \odot$ $\odot \odot$ Use place value counters to divide using the bus stop method alongside $42 \div 3=$ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14.	Children can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently	Begin with divisions that divide equally with no remainder Move onto divisions with a remainder. Finally move into decimal places to divide the total accurately.

Long division	2544 + 12 How many groups of 12 thousands do we have? None Exchange 2 thousand for 20 hundreds. $1 2 \longdiv { 2 5 4 4 }$ How many groups of 12 are in 25 hundreds? 2 groups. Circle them. We have grouped 24 hundreds so can take them off and we are left with one. Exchange the one hundred for ten tens so now we have 14 tens. How many groups of 12 are in 14 ? 1 remainder 2 $\begin{array}{r} 1 2 \longdiv { 0 2 1 } \\ \frac{24}{2544} \\ \hline \frac{14}{12} \\ \hline 2 \end{array}$ Exchange the two tens for twenty ones so now we have 24 ones. How many groups of 12 are in 24? 2	Instead of using physical counters, children can draw the counters and circle the groups on a whiteboard or in their books. Use this method to explain what is happening and as soon as they have understood what move on to the abstract method as this can be a time consuming process.	$20 \begin{array}{rrrrr} 0 & 3 & 1 & 8 \\ \hline 6 & 3 & 6 & 5 \\ -6 & 0 & 1 & 1 \\ -3 & 6 \\ -3 & 1 \\ 2 & 0 & 1 \\ -1 & 6 & 5 \\ -1 & 6 & 0 \\ \hline & 5 \end{array}$

Fractions

Recognise and show using diagrams, families of common equivalent fractions			$\begin{aligned} & \frac{5}{5}=\frac{-}{15} \\ & \frac{2}{3}=\frac{-}{6} \\ & \frac{4}{8}=\frac{-}{4} \end{aligned}$
Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number		recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents	I have 50 strawberries. I eat $\frac{3}{5}$. How many do l eat? How many do I have left?

Multiply proper fractions and mixed numbers by whole numbers		\square Fractions X whole \#s $\frac{1}{4} \times 3$ \longrightarrow I've got one-fourth three times \longleftarrow RGGEATED ADDIIIIN: \square PICTURES: $\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}$ $\frac{3}{4}=$ \square	$\frac{5}{6} \times 4=\frac{20}{6}=3 \frac{2}{6}=$
Identify the value of each digit in numbers given to three decimal places	Dceimal Place Valuc chart	1 0.1 0.01 0.001 0.001 0.0001	How many thousandths are in 0.543?

| Divide proper |
| :--- | :--- | :--- | :--- |
| fractions by |
| whole numbers |

