Lea Community Primary School

迎

Progression of Knowledge- Design and Technology

Academic year 2023-2024

Progression of Knowledge at Lea Community Primary School - Design Technology

	Workshop Join Bend Slot Measure Materials Fix	Fabric Model Safety pin Template	Ferris wheel	Digital revolution Initiate Point of sale Micro:bit Simulator Smart wearables	Insulator Series switch		Sustainable design Workplane Textiles Annotate Fastening Running-stitch Seam Thread Unique
Technical	To know there are a range to different materials that can be used to make a model and that they are all slightly different. Making simple suggestions to fix their junk model. To know that 'waterproof' materials are those which do not absorb water. To know that soup is ingredients (usually vegetables and liquid) blended together. To know that vegetables are grown. To recognise and name some common vegetables. To know that different vegetables taste different. To know that eating vegetables is good for us. To discuss why different packages might be used for different foods.	To understand that the shape of materials can be changed to improve the strength and stiffness of structures. To understand that cylinders are a strong type of structure (e.g. the main shape used for windmills and lighthouses). To understand that axles are used in structures and mechanisms to make parts turn in a circle. To begin to understand that different structures are used for different purposes. To know that a structure is something that has been made and put together. Understanding the difference between fruits and vegetables. To understand that some foods typically known as vegetables are actually fruits (e.g. cucumber). To know that a blender is a machine which mixes ingredients together into a smooth liquid. To know that a fruit has seeds and a vegetable does not. To know that fruits grow on trees or vines. To know that vegetables can grow either above or below ground.	To know that materials can be manipulated to improve strength and stiffness. To know that a structure is something which has been formed or made from parts. To know that a 'stable' structure is one which is firmly fixed and unlikely to change or move. To know that a 'strong' structure is one which does not break easily. To know that a 'stiff' structure or material is one which does not bend easily. To know that different materials have different properties and are therefore suitable for different uses. To know that mechanisms are a collection of moving parts that work together as a machine to produce movement. To know that there is always an input and output in a mechanism. To know that an input is the energy that is used to start something working. To know that an output is the movement that happens as a result of the input. To know that a lever is something that turns on a pivot.	To know that not all fruits and vegetables can be grown in the UK. To know that climate affects food growth. To know that vegetables and fruit grow in certain seasons. To know that cooking instructions are known as a 'recipe'. To know that imported food is food which has been brought into the country. To know that exported food is food which has been sent to another country. To understand that imported foods travel from far away and this can negatively impact the environment. To know that each fruit and vegetable gives us nutritional benefits because they contain vitamins, minerals and fibre. To understand that vitamins, minerals and fibre are important for energy, growth and maintaining health. To know safety rules for using, storing and cleaning a knife safely. To know that similar coloured fruits and vegetables often have similar nutritional benefits.	To know that an electrical circuit must be complete for electricity to flow. To know that a switch can be used to complete and break an electrical circuit. To know that air resistance is the level of drag on an object as it is forced through the air. To understand that the shape of a moving object will affect how it moves due to air resistance. To know that different materials have different properties and are therefore suitable for different uses.	To know that mechanisms control movement. To understand that mechanisms can be used to change one kind of motion into another. To understand how to use sliders, pivots and folds to create paper-based mechanisms. To know that series circuits only have one direction for the electricity to flow. To know when there is a break in a series circuit, all components turn off. To know that an electric motor converts electrical energy into rotational movement, causing the motor's axle to spin. To know a motorised product is one which uses a motor to function. To understand where meat comes from - learning that beef is from cattle and how beef is reared and processed, including key welfare issues. To know that I can adapt a recipe to make it healthier by substituting ingredients. To know that I can use a nutritional calculator to see how healthy a food option is. To understand that 'crosscontamination' means bacteria and germs have	To know that accelerometers can detect movement. To understand that sensors can be useful in products as they mean the product can function without human input. To know that structures can be strengthened by manipulating materials and shapes. To understand that it is important to design clothing with the client/ target customer in mind. To know that using a template (or clothing pattern) helps to accurately mark out a design on fabric. To understand the importance of consistently sized stitches.

		To know that vegetables can come from different parts of the plant (e.g. roots: potatoes, leaves: lettuce, fruit: cucumber). To know that joining technique' means connecting two pieces of material together. To know that there are various temporary methods of joining fabric by using staples. glue or pins. To understand that different techniques for joining materials can be used for different purposes. To understand that a template (or fabric pattern) is used to cut out the same shape multiple times. To know that drawing a design idea is useful to see how an idea will look.	To know that a linkage mechanism is made up of a series of levers.	To understand that, in programming, a 'loop' is code that repeats something again and again until stopped. To know that a Micro:bit is a pocket-sized, codeable computer. To understand that wide and flat based objects are more stable. To understand the importance of strength and stiffness in structures.		been passed onto ready-toeat foods and it happens when these foods mix with raw meat or unclean objects.	
Additional	To know that some objects float and others sink. To know the different parts of a boat.	To know that a client is the person I am designing for. To know that design criteria is a list of points to ensure the product meets the clients needs and wants. To know that a windmill harnesses the power of wind for a purpose like grinding grain, pumping water or generating electricity. To know that windmill turbines use wind to turn and make the machines inside work. To know that a windmill is a structure with sails that are moved by the wind. To know the three main parts of a windmill are the turbine, axle and structure.	To know the features of a ferris wheel include the wheel, frame, pods, a base an axle and an axle holder. To know that it is important to test my design as I go along so that I can solve any problems that may occur. To know some real-life objects that contain mechanisms.	To know what the 'Digital Revolution' is and features of some of the products that have evolved as a result. To know that in Design and technology the term 'smart' means a programmed product. To know the difference between analogue and digital technologies. To understand what is meant by 'point of sale display.' To know that CAD stands for 'Computer-aided design'. To know the following features of a castle: flags, towers, battlements, turrets, curtain walls, moat, drawbridge and gatehouse and their purpose. To know that a façade is the front of a structure.	To know the features of a torch: case, contacts, batteries, switch, reflector, lamp, lens. To know facts from the history and invention of the electric light bulb(s) - by Sir Joseph Swan and Thomas Edison. To know that aesthetics means how an object or product looks in design and technology. To know that a template is a stencil you can use to help you draw the same shape accurately. To know that a birds-eye view means a view from a high angle (as if a bird in flight). To know that graphics are images which are designed to explain or advertise something. To know that it is important to assess and evaluate	To know that a design brief is a description of what I am going to design and make. To know that designers often want to hide mechanisms to make a product more aesthetically pleasing. To know that product analysis is critiquing the strengths and weaknesses of a product. To know that 'configuration' means how the parts of a product are arranged.	To know that designers write design briefs and develop design criteria to enable them to fulfil a client's request. To know that 'multifunctional' means an object or product has more than one function. To know that magnetometers are devices that measure the Earth's magnetic field to determine which direction you are facing. To understand what a 'footprint plan' is. To understand that in the real world, design , can impact users in positive and negative ways. To know that a prototype is a cheap model to test a design idea.

						Designing appealing packaging to reflect a recipe.	
Make	Improving fine motor/scissor skills with a variety of materials. Joining materials in a variety of ways (temporary and permanent). Joining different materials together. Describing their junk model, and how they intend to put it together. Making a boat that floats and is waterproof, considering material choices. Chopping plasticine safely. Chopping vegetables with support.	Cutting fabric neatly with scissors. Using joining methods to decorate a puppet. Sequencing steps for construction. Chopping fruit and vegetables safely to make a smoothie. Identifying if a food is a fruit or a vegetable. Learning where and how fruits and vegetables grow. Making stable structures from card, tape and glue. Learning how to turn 2D nets into 3D structures. Following instructions to cut and assemble the supporting structure of a windmill. Making functioning turbines and axles which are assembled into a main supporting structure.	Making a structure according to design criteria. Creating joints and structures from paper/card and tape. Building a strong and stiff structure by folding paper. Selecting materials according to their characteristics. Following a design brief. Making linkages using card for levers and split pins for pivots. Experimenting with linkages adjusting the widths, lengths and thicknesses of card used. Cutting and assembling components neatly.	Constructing a range of 3D geometric shapes using nets. Creating special features for individual designs. Making facades from a range of recycled materials. Knowing how to prepare themselves and a work space to cook safely in, learning the basic rules to avoid food contamination. Following the instructions within a recipe. Using a template when cutting and assembling the pouch. Following a list of design requirements. Selecting and using the appropriate tools and equipment for cutting, joining, shaping and decorating a foam pouch. Applying functional features such as using foam to create soft buttons.	Making a torch with a working electrical circuit and switch. Using appropriate equipment to cut and attach materials. Assembling a torch according to the design and success criteria. Measuring, marking, cutting and assembling with increasing accuracy. Making a model based on a chosen design. Selecting materials according to their characteristics. Following a design brief.	Following a design brief to make a pop up book, neatly and with focus on accuracy. Making mechanisms and/or structures using sliders, pivots and folds to produce movement. Using layers and spacers to hide the workings of mechanical parts for an aesthetically pleasing result. Altering a product's form and function by tinkering with its configuration. Making a functional series circuit, incorporating a motor. Constructing a product with consideration for the design criteria. Cutting and preparing vegetables safely. Using equipment safely, including knives, hot pans and hobs. Knowing how to avoid crosscontamination. Following a step by step method carefully to make a recipe.	Considering materials and their functional properties, especially those that are sustainable and recyclable (for example, cork and bamboo). Explaining material choices and why they were chosen as part of a product concept. Programming an $\mathrm{N}, \mathrm{E}, \mathrm{S}, \mathrm{W}$ cardinal compass. Building a range of play apparatus structures drawing upon new and prior knowledge of structures. Measuring, marking and cutting wood to create a range of structures. Using a range of materials to reinforce and add decoration to structures. Using a template when cutting fabric to ensure they achieve the correct shape. Using pins effectively to secure a template to fabric without creases or bulges. Marking and cutting fabric accurately, in accordance with their design. Sewing a strong running stitch, making small, neat stitches and following the edge. Tying strong knots. Decorating a waistcoat, attaching features (such as appliqué) using thread. Finishing the waistcoat with a secure fastening (such as buttons). Learning different decorative stitches. Sewing accurately with evenly spaced, neat stitches.
Evaluate	Giving a verbal evaluation of their own and others' junk models with adult support. Checking to see if their	Reflecting on a finished product, explaining likes and dislikes.	Testing the strength of own structure. Identifying the weakest part of a structure.	Evaluating own work and the work of others based on the aesthetic of the finished product and in comparison	Evaluating electrical products. Testing and evaluating the success of a final product.	Carry out a product analysis to look at the purpose of a product along with its strengths and weaknesses.	Explaining how my program fits the design criteria and how it would be useful as part of a navigation tool.

